Skip to main content

Posts

Showing posts with the label flight mechanics

𝐇𝐞𝐥𝐢𝐜𝐨𝐩𝐭𝐞𝐫 𝐒𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞

Helicopter Structure 🛩️The major components of a helicopter are the airframe, fuselage, landing gear, powerplant/ transmission, main rotor system, and antitorque system. 🛩️The airframe, or fundamental structure, of a helicopter can be made of either metal or wood composite materials, or some combination of the two. Typically, a composite component consists of many layers of fiber- impregnated resins, bonded to form a smooth panel. Tubular and sheet metal substructures are. 🛩️The major components of a helicopter are the airframe, fuselage, landing gear, powerplant/ transmission, main rotor system, and antitorque system. 🛩️The airframe, or fundamental structure, of a helicopter can be made of either metal or wood composite materials, or some combination of the two. Typically, a composite component consists of many layers of fiber- impregnated resins, bonded to form a smooth panel. Tubular and sheet metal substructures are usually made of aluminum, though stainless steel or...

𝐆𝐥𝐢𝐝𝐞 𝐒𝐥𝐨𝐩𝐞

Glide Slope 🛩️glide slope of ILS is defined as a system of vertical guidance embodied in the Instrument Landing System which indicates the vertical deviation of the aircraft from its optimum path of descent. 🛩️A glide slope station uses an antenna array sited to one side of the runway touchdown zone. The GS signal is transmitted on a carrier signal. 🛩️The centre of the glide slope signal is arranged to define a glide path of approximately 3° above horizontal (ground level). The beam is 1.4° deep (0.7° below the glide-path centre and 0.7° above). 🛩️The pilot controls the aircraft so that the glide slope indicator remains centered on the display to ensure the aircraft is following the glide path to remain above obstructions and reach the runway at the proper touchdown point (it provides vertical guidance). 🛩️Two signals are transmitted on one of 40 ILS channels. One is modulated at 90 Hz, the other at 150 Hz. These are transmitted from co-located ant...

𝐓𝐲𝐩𝐞𝐬 𝐨𝐟 𝐑𝐚𝐝𝐢𝐨 𝐖𝐚𝐯𝐞𝐬

Types of Radio Waves 🛩️Radio waves of different frequencies have unique characteristics as they propagate through the atmosphere. VLF, LF, & MF waves have relatively long wavelengths and utilize correspondingly long antennas. 🛩️Radio waves produced at these frequencies ranging from 3kHz to 3mHz are known as ground waves or surface waves. They follow the curvature of the earth as they travel from the broadcast antenna to the receiving antenna. Ground waves are particularly useful for long distance transmissions. Automatic direction finders (ADF) & LORAN navigational aids use these frequencies. ✈️High frequency (HF) radio waves travel in a straight line & do not curve to follow the earth’s surface. This would limit transmissions from the broadcast antenna to receiving antennas only in the line-of-sight of the broadcast antenna except for a unique characteristic. HF radio waves bounce off of the ionosphere layer of the atmosphere. This refraction extends the range of...

𝐇𝐞𝐥𝐢𝐜𝐨𝐩𝐭𝐞𝐫 𝐅𝐥𝐢𝐠𝐡𝐭 𝐂𝐨𝐧𝐭𝐫𝐨𝐥 𝐒𝐲𝐬𝐭𝐞𝐦

Helicopter Flight Control System 🛩️helicopter pilot manipulates the helicopter flight controls to achieve and maintain controlled aerodynamic flight. 🛩️Changes to the helicopter flight control system transmit mechanically to the rotor, producing aerodynamic effects on the rotor blades that make the helicopter move in a deliberate way. 🛩️To tilt forward and back (pitch) or sideways (roll), requires that the controls alter the angle of attack of the main rotor blades cyclically during rotation, creating differing amounts of lift(forces) at different points in the cycle. 🛩️To increase or decrease overall lift requires that the controls alter the AoA for all blades collectively by equal amounts at the same time, resulting in ascent, descent, acceleration and deceleration. 🛩️A typical helicopter has three flight control inputs—the cyclic stick, the collective lever, and the anti-torque pedals. 🛩️Depending on the complexity of the helicop...

𝐓𝐫𝐚𝐧𝐬𝐨𝐧𝐢𝐜 𝐀𝐫𝐞𝐚 𝐑𝐮𝐥𝐞

Transonic Area Rule 🛩️The Transonic area rule, also called the Whitcomb area rule, is a design technique used to reduce an aircraft's drag at transonic and supersonic speeds, particularly between Mach 0.75 and 1.2. 🛩️This is one of the most important operating speed ranges for commercial and military fixed-wing aircraft today, with transonic acceleration being considered an important performance metric for combat aircraft and necessarily dependent upon transonic drag. 🛩️At high-subsonic flight speeds, the local speed of the airflow can reach the speed of sound where the flow accelerates around the aircraft body and wings. The speed at which this development occurs varies from aircraft to aircraft and is known as the critical Mach number. 🛩️The resulting shock waves formed at these points of sonic flow can result in a sudden increase in drag, called wave drag. To reduce the number and power of these shock waves, an a...

𝐋𝐚𝐭𝐞𝐫𝐚𝐥 𝐚𝐧𝐝 𝐋𝐨𝐧𝐠𝐢𝐭𝐮𝐝𝐢𝐧𝐚𝐥 𝐁𝐚𝐥𝐚𝐧𝐜𝐞

Lateral and Longitudinal Balance 🛩️Balance refers to the location of the CG of an aircraft, and is important to stability and safety in flight. The CG is a point at which the aircraft would balance if it were suspended at that point. 🛩️The primary concern in balancing an aircraft is the fore and aft location of the CG along the longitudinal axis. The CG is not necessarily a fixed point; its location depends on the distribution of weight in the aircraft. 🛩️As variable load items are shifted or expended, there is a resultant shift in CG location. The distance between the forward and back limits for the position of the center for gravity or CG range is certified for an aircraft by the manufacturer. 🛩️The pilot should realize that if the CG is displaced too far forward on the longitudinal axis, a nose-heavy condition will result. Conversely, if the CG is displaced too far aft on the longitudinal axis, a tail heavy condition results. It is possible that the pilot could not c...