Skip to main content

Posts

Showing posts with the label INS

𝐆𝐥𝐢𝐝𝐞 𝐒𝐥𝐨𝐩𝐞

Glide Slope 🛩️glide slope of ILS is defined as a system of vertical guidance embodied in the Instrument Landing System which indicates the vertical deviation of the aircraft from its optimum path of descent. 🛩️A glide slope station uses an antenna array sited to one side of the runway touchdown zone. The GS signal is transmitted on a carrier signal. 🛩️The centre of the glide slope signal is arranged to define a glide path of approximately 3° above horizontal (ground level). The beam is 1.4° deep (0.7° below the glide-path centre and 0.7° above). 🛩️The pilot controls the aircraft so that the glide slope indicator remains centered on the display to ensure the aircraft is following the glide path to remain above obstructions and reach the runway at the proper touchdown point (it provides vertical guidance). 🛩️Two signals are transmitted on one of 40 ILS channels. One is modulated at 90 Hz, the other at 150 Hz. These are transmitted from co-located ant...

𝐑𝐚𝐝𝐢𝐨 𝐰𝐚𝐯𝐞𝐬

Radio Waves 🛩️A radio wave is invisible to the human eye. It is electromagnetic in nature and part of the electronic spectrum of wave activity that includes gamma rays, x-rays, ultraviolet rays, infrared waves, and visible light rays, as well all radio waves. The atmosphere is filled with these waves. Each wave occurs at a specific frequency and has a corresponding wavelength. The relationship between frequency and wavelength is inversely proportional. A high frequency wave has a short wave length and a low frequency wave has a long wave length. 🛩️In aviation, a variety of radio waves are used for communication. Here, It is illustrated the radio spectrum that includes the range of common aviation radio frequencies and their applications. 🛩️A wide range of frequencies are used from low frequency (LF) at 100 kHz (100,000 cycles per second) to super high frequency (SHF) at nearly 10gHz (10,000,000,000 cycles per second). The Federal Communications Commission (FCC) controls ...

𝐀𝐢𝐫𝐩𝐨𝐫𝐭 𝐌𝐚𝐫𝐤𝐢𝐧𝐠𝐬

Airport Markings ➡️Subscribe us for more aircraft knowledge and aircraft fact⬅️ ➡️Do Share with your Friends⬅️

𝐑𝐮𝐧𝐰𝐚𝐲 𝐌𝐚𝐫𝐤𝐢𝐧𝐠𝐬 𝐚𝐧𝐝 𝐒𝐢𝐠𝐧𝐬

Runway Markings and Signs ➡️Subscribe us for more aircraft knowledge and aircraft fact⬅️ ➡️Do Share with your Friends⬅️

𝐀𝐢𝐫𝐩𝐨𝐫𝐭 𝐒𝐢𝐠𝐧𝐬

Airport Signs ➡️Subscribe us for more aircraft knowledge and aircraft fact⬅️ ➡️Do Share with your Friends⬅️

𝐈𝐧𝐞𝐫𝐭𝐢𝐚𝐥 𝐍𝐚𝐯𝐢𝐠𝐚𝐭𝐢𝐨𝐧 𝐒𝐲𝐬𝐭𝐞𝐦

Inertial Navigation System 🛩️INSs contain Inertial Measurement Units (IMUs) which have angular and linear accelerometers (for changes in position). 🛩️some IMUs include a gyroscopic element (for maintaining an absolute angular reference). 🛩️Angular accelerometers measure how the vehicle is rotating in space. 🛩️Generally, there is at least one sensor for each of the three axes: pitch (nose up and down), yaw (nose left and right) and roll (clockwise or counter-clockwise from the cockpit). 🛩️Linear accelerometers measure non-gravitational accelerations of the vehicle. 🛩️Since it can move in three axes (up & down, left & right, forward & back), there is a linear accelerometer for each axis. 🛩️A computer continually calculates the vehicle's current position. 🛩️First, for each of the six degrees of freedom, it integrates over time the sensed acceleration, together with an estimate of gravity, to calculate the current velocity. Then it integrates the vel...