Skip to main content

๐‹๐š๐ญ๐ž๐ซ๐š๐ฅ ๐š๐ง๐ ๐‹๐จ๐ง๐ ๐ข๐ญ๐ฎ๐๐ข๐ง๐š๐ฅ ๐๐š๐ฅ๐š๐ง๐œ๐ž


Lateral and Longitudinal Balance

๐Ÿ›ฉ️Balance refers to the location of the CG of an aircraft, and is important to stability and safety in flight. The CG is a point at which the aircraft would balance if it were suspended at that point.

๐Ÿ›ฉ️The primary concern in balancing an aircraft is the fore and aft location of the CG along the longitudinal axis. The CG is not necessarily a fixed point; its location depends on the distribution of weight in the aircraft.

๐Ÿ›ฉ️As variable load items are shifted or expended, there is a resultant shift in CG location. The distance between the forward and back limits for the position of the center for gravity or CG range is certified for an aircraft by the manufacturer.

๐Ÿ›ฉ️The pilot should realize that if the CG is displaced too far forward on the longitudinal axis, a nose-heavy condition will result. Conversely, if the CG is displaced too far aft on the longitudinal axis, a tail heavy condition results. It is possible that the pilot could not control the aircraft if the CG location produced an unstable condition.

๐Ÿ›ฉ️Location of the CG with reference to the lateral axis is also important. For each item of weight existing to the left of the fuselage centerline, there is an equal weight existing at a corresponding location on the right. This may be upset by unbalanced lateral loading.

๐Ÿ›ฉ️The position of the lateral CG is not computed in all aircraft, but the pilot must be aware that adverse effects arise as a result of a laterally unbalanced condition. In an airplane, lateral unbalance occurs if the fuel load is mismanaged by supplying the engine(s) unevenly from tanks on one side of the airplane. The pilot can compensate for the resulting wing-heavy condition by adjusting the trim or by holding a constant control pressure. This action places the aircraft controls in an out-of-streamline condition, increases drag, and results in decreased operating efficiency.

๐Ÿ›ฉ️Longitudinal balance is more critical than other factors.

➡️Subscribe us for more aircraft knowledge and aircraft fact⬅️
➡️Do Share with your Friends⬅️

Comments

Popular posts from this blog

๐–๐ž๐ญ-๐’๐ฎ๐ฆ๐ฉ ๐Ž๐ข๐ฅ ๐’๐ฒ๐ฌ๐ญ๐ž๐ฆ

Wet Sump Oil System ✳️The engine oil system performs several important functions: ๐Ÿ›ฉ️Lubrication of the engine’s moving parts . ๐Ÿ›ฉ️Cooling of the engine by reducing friction . ๐Ÿ›ฉ️Removing heat from the cylinders . ๐Ÿ›ฉ️Carrying away contaminants . ๐Ÿ›ฉ️Providing a seal between the cylinder walls and pistons. ➡️Subscribe us for more aircraft knowledge and aircraft fact⬅️ ➡️Do Share with your Friends⬅️

๐‚๐ฅ๐จ๐ฎ๐๐ฌ

Basic Clouds ๐Ÿ›ฉ️Cloud type is determined by its height, shape, & characteristics. They are classified according to the height of their bases as low, middle, or high clouds, as well as clouds with vertical development. ๐Ÿ›ฉ️Low clouds are those that form near the Earth’s surface and extend up to about 6,500 feet AGL. They are made of water droplets but can include supercooled water droplets that induce hazardous aircraft icing. Typical low clouds are stratus, stratocumulus, nimbostratus. Fog is also low cloud formation. This Clouds create low ceilings, hamper visibility, & can change rapidly. They influence flight planning & can make visual flight rules (VFR) flight impossible. ๐Ÿ›ฉ️Middle clouds form around 6,500 feet AGL & extend up to 20,000 feet AGL. They are composed of water, ice crystals, & supercooled water droplets. Typical middle-level clouds include altostratus & altocumulus. These types of clouds are encountered on cross-country flights at highe

๐†๐ฅ๐ข๐๐ž ๐’๐ฅ๐จ๐ฉ๐ž

Glide Slope ๐Ÿ›ฉ️glide slope of ILS is defined as a system of vertical guidance embodied in the Instrument Landing System which indicates the vertical deviation of the aircraft from its optimum path of descent. ๐Ÿ›ฉ️A glide slope station uses an antenna array sited to one side of the runway touchdown zone. The GS signal is transmitted on a carrier signal. ๐Ÿ›ฉ️The centre of the glide slope signal is arranged to define a glide path of approximately 3° above horizontal (ground level). The beam is 1.4° deep (0.7° below the glide-path centre and 0.7° above). ๐Ÿ›ฉ️The pilot controls the aircraft so that the glide slope indicator remains centered on the display to ensure the aircraft is following the glide path to remain above obstructions and reach the runway at the proper touchdown point (it provides vertical guidance). ๐Ÿ›ฉ️Two signals are transmitted on one of 40 ILS channels. One is modulated at 90 Hz, the other at 150 Hz. These are transmitted from co-located antennas. Each antenna