Skip to main content

๐๐ฅ๐ž๐ž๐ ๐€๐ข๐ซ ๐Ÿ๐ซ๐จ๐ฆ ๐„๐ง๐ ๐ข๐ง๐ž


Bleed Air from Engine



๐Ÿ›ฉ️When air enters a turbine engine, it goes through a series of compressors, which significantly increase the air temperature and pressure before mixing that air with fuel and igniting it. A small portion of that compressed air, however, does not enter the combustion chamber and instead is redirected from the engine via valves, ducting and manifolds to various other areas of the aircraft.

๐Ÿ›ฉ️Bleed air is extracted from the compressor of the engine or APU.

๐Ÿ›ฉ️The specific stage of the compressor from which the air is bled varies by engine type.

๐Ÿ›ฉ️In some engines, air may be taken from more than one location for different uses as the temperature and pressure of the air is variable dependant upon the compressor stage at which it is extracted.

๐Ÿ›ฉ️Bleed air from that system can be utilized for internal cooling of the engine, cross-starting another engine, engine and airframe anti-icing, cabin pressurization, pneumatic actuators, air-driven motors, pressurizing the hydraulic reservoir, and waste and water storage tanks.

๐Ÿ›ฉ️bleed air's primary use is to provide pressure for the aircraft cabin by supplying air to the environmental control system.

๐Ÿ›ฉ️Additionally, bleed air is used to keep critical parts of the plane (such as the wing leading edges) ice-free.

๐Ÿ›ฉ️Bleed air is valuable in an aircraft for two properties, high temperature and high pressure (typical values are 200–250 °C and 275 kPa (40 PSI).


➡️Subscribe us for more aircraft knowledge and aircraft fact⬅️
➡️Do Share with your Friends⬅️

Comments

Popular posts from this blog

๐“๐ฒ๐ฉ๐ž๐ฌ ๐จ๐Ÿ ๐‚๐จ๐ฆ๐›๐ฎ๐ฌ๐ญ๐ข๐จ๐ง ๐‚๐ก๐š๐ฆ๐›๐ž๐ซ๐ฌ

๐Ÿ›ฉ️A combustor is a component or area of a gas turbine, ramjet, or scramjet engine where combustion takes place. It is also known as a burner, combustion chamber or flame holder. In a gas turbine engine, combustion chamber is fed high pressure air by the compression system. ๐Ÿ›ฉ️The combustor then heats this air at constant pressure. After heating, air passes from the combustor through the nozzle guide vanes to the turbine. In the case of a ramjet or scramjet engines, the air is directly fed to the nozzle. ๐€๐ง๐ง๐ฎ๐ฅ๐š๐ซ ๐“๐ฒ๐ฉ๐ž ✈️The most commonly used type of combustor is the fully annular combustor. Annular combustors do away with the separate combustion zones and simply have a continuous liner and casing in a ring. There are many advantages to annular combustors, including more uniform combustion, shorter size, lighter, and less surface area. Annular combustors tend to have very uniform exit temperatures. They also have the lowest pressure drop of the three...

๐— ๐—ผ๐—ป๐—ผ๐—ฐ๐—ผ๐—พ๐˜‚๐—ฒ ๐˜ƒ๐˜€ ๐—ฆ๐—ฒ๐—บ๐—ถ-๐—บ๐—ผ๐—ป๐—ผ๐—ฐ๐—ผ๐—พ๐˜‚๐—ฒ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ

๐Ÿ›ซA monocoque structure uses its outer shell to support stresses and loads applied to it, whereas a semi-monocoque structure has an internal "skeleton" of supports and braces to keep its shape rigid and strong. ๐Ÿ›ซThe vast majority of pressurized aircraft are semimonocoque to help distribute stresses equally along the fuselage during flight. ๐Ÿ›ซHowever, some helicopters use monocoque structure to maximize internal space in the flight compartment. ๐Ÿ›ซMonocoque fuselage has its skin holding the skeleton structure together while the semi-monocoque has both the skin and the skeleton holding together. ๐Ÿ›ซSemi-monocoque also has "stringers" running horizontally down the plane to help hold the frame together. ๐Ÿ›ซThe monocoque fuselage also cannot be used for airframes after a certain size (small aircraft with single engine), but the semi-monocoque has been used from single piston engines to commercial airliners. ๐Ÿ›ซA monocoque design would also have ...

๐„๐ฆ๐ฉ๐ž๐ง๐ง๐š๐ ๐ž

Empennage ๐Ÿ›ฉ️The empennage of an aircraft is also known as the tail section. Most empennage designs consist of a tail cone, fixed aerodynamic surfaces or stabilizers, and movable aerodynamic surfaces. ๐Ÿ›ฉ️The tail cone serves to close and streamline the aft end of most fuselages. The cone is made up of structural members like those of the fuselage; however, cones are usually of lighter construction since they receive less stress than the fuselage. ๐Ÿ›ฉ️The other components of the typical empennage are of heavier construction than the tail cone. These members include fixed surfaces that help stabilize the aircraft and movable surfaces that help to direct an aircraft during flight. The fixed surfaces are the horizontal stabilizer and vertical stabilizer. The movable surfaces are usually a rudder located at the aft edge of the vertical stabilizer and an elevator located at the aft edge the horizontal stabilizer. ๐Ÿ›ฉ️The structure of the stabilizers is very similar to that which ...