Skip to main content

𝐅𝐨𝐫𝐜𝐞𝐬 𝐢𝐧 𝐓𝐮𝐫𝐧


Forces in Turn



🛩️If an aircraft were viewed in straight & level flight from the front & if the forces acting on the aircraft could be seen, lift & weight would be apparent: two forces.If the aircraft were in a bank it would be apparent that lift did not act directly opposite to the weight, rather it now acts in the direction of the bank. When the aircraft banks, lift acts inward toward the center of the turn, perpendicular to the lateral axis as well as upward.

🛩️An increase in airspeed results in an increase of the turn radius, & centrifugal force is directly proportional to the radius of the turn. In a correctly executed turn, the horizontal component of lift must be exactly equal & opposite to the centrifugal force. As the airspeed is increased in a constant-rate level turn, the radius of the turn increases. This increase in the radius of turn causes an increase in the centrifugal force, which must be balanced by an increase in the horizontal component of lift, which can only be increased by increasing the angle of bank.


🛩️In a slipping turn, the aircraft is not turning at the rate appropriate to the bank being used, since the aircraft is yawed toward the outside of the turning flight path. The aircraft is banked too much for the rate of turn, so the horizontal lift component is greater than the centrifugal force. Equilibrium between the horizontal lift component & centrifugal force is reestablished by either decreasing the bank, increasing the ROT, or a combination of the two changes.


🛩️A skidding turn results from an excess of centrifugal force over the horizontal lift component, pulling the aircraft toward the outside of the turn. The ROT is too great for the angle of bank. Correction of a skidding turn involves a reduction in the ROT, an increase in bank, or a combination of the two changes.


🛩️To maintain a given ROT, the angle of bank must be varied with the airspeed. It is important in high-speed aircraft. For instance, at 400 mph, an aircraft must be banked approximately 44° to execute a standard-rate turn(3°per sec). At this angle of bank, only about 79 percent of the lift of the aircraft comprises the vertical component of lift.


➡️Subscribe us for more aircraft knowledge and aircraft fact⬅️
➡️Do Share with your Friends⬅️

Comments

Popular posts from this blog

𝐖𝐞𝐭-𝐒𝐮𝐦𝐩 𝐎𝐢𝐥 𝐒𝐲𝐬𝐭𝐞𝐦

Wet Sump Oil System ✳️The engine oil system performs several important functions: 🛩️Lubrication of the engine’s moving parts . 🛩️Cooling of the engine by reducing friction . 🛩️Removing heat from the cylinders . 🛩️Carrying away contaminants . 🛩️Providing a seal between the cylinder walls and pistons. ➡️Subscribe us for more aircraft knowledge and aircraft fact⬅️ ➡️Do Share with your Friends⬅️

𝐂𝐥𝐨𝐮𝐝𝐬

Basic Clouds 🛩️Cloud type is determined by its height, shape, & characteristics. They are classified according to the height of their bases as low, middle, or high clouds, as well as clouds with vertical development. 🛩️Low clouds are those that form near the Earth’s surface and extend up to about 6,500 feet AGL. They are made of water droplets but can include supercooled water droplets that induce hazardous aircraft icing. Typical low clouds are stratus, stratocumulus, nimbostratus. Fog is also low cloud formation. This Clouds create low ceilings, hamper visibility, & can change rapidly. They influence flight planning & can make visual flight rules (VFR) flight impossible. 🛩️Middle clouds form around 6,500 feet AGL & extend up to 20,000 feet AGL. They are composed of water, ice crystals, & supercooled water droplets. Typical middle-level clouds include altostratus & altocumulus. These types of clouds are encountered on cross-country flights at highe

𝐆𝐥𝐢𝐝𝐞 𝐒𝐥𝐨𝐩𝐞

Glide Slope 🛩️glide slope of ILS is defined as a system of vertical guidance embodied in the Instrument Landing System which indicates the vertical deviation of the aircraft from its optimum path of descent. 🛩️A glide slope station uses an antenna array sited to one side of the runway touchdown zone. The GS signal is transmitted on a carrier signal. 🛩️The centre of the glide slope signal is arranged to define a glide path of approximately 3° above horizontal (ground level). The beam is 1.4° deep (0.7° below the glide-path centre and 0.7° above). 🛩️The pilot controls the aircraft so that the glide slope indicator remains centered on the display to ensure the aircraft is following the glide path to remain above obstructions and reach the runway at the proper touchdown point (it provides vertical guidance). 🛩️Two signals are transmitted on one of 40 ILS channels. One is modulated at 90 Hz, the other at 150 Hz. These are transmitted from co-located antennas. Each antenna