Skip to main content

๐“๐ฒ๐ฉ๐ž๐ฌ ๐จ๐Ÿ ๐’๐ก๐จ๐œ๐ค ๐–๐š๐ฏ๐ž


Types Shock Waves


๐Ÿ›ฉ️In physics, a shock wave is a type of propagating disturbance that moves faster than the local speed of sound in the medium. A shock wave carries energy and can propagate through a medium but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium.

✈️Normal Shocks
๐Ÿ›ซIn elementary fluid mechanics utilizing ideal gases, a shock wave is treated as a discontinuity where entropy increases over a nearly infinitesimal region. Since no fluid flow is discontinuous, a control volume is established around the shock wave, with the control surfaces that bound this volume parallel to the shock wave (with one surface on the pre-shock side of the fluid medium and one on the post-shock side). The two surfaces are separated by a very small depth such that the shock itself is entirely contained between them. Taking into account the established assumptions, in a system where the downstream properties are becoming subsonic: the upstream and downstream flow properties of the fluid are considered isentropic.

✈️Oblique shocks
๐Ÿ›ซWhen analyzing shock waves in a flow field, which are still attached to the body, the shock wave which is deviating at some arbitrary angle from the flow direction is termed oblique shock. These shocks require a component vector analysis of the flow; doing so allows for the treatment of the flow in an orthogonal direction to the oblique shock as a normal shock.

✈️Bow shocks
๐Ÿ›ซWhen an oblique shock is likely to form at an angle which cannot remain on the surface, a nonlinear phenomenon arises where the shock wave will form a continuous pattern around the body. These are termed bow shocks. In these cases, the 1d flow model is not valid and further analysis is needed to predict the pressure forces which are exerted on the surface.

➡️Subscribe us for more aircraft knowledge and aircraft fact⬅️
➡️Do Share with your Friends⬅️

Comments

Popular posts from this blog

๐“๐ฒ๐ฉ๐ž๐ฌ ๐จ๐Ÿ ๐‚๐จ๐ฆ๐›๐ฎ๐ฌ๐ญ๐ข๐จ๐ง ๐‚๐ก๐š๐ฆ๐›๐ž๐ซ๐ฌ

๐Ÿ›ฉ️A combustor is a component or area of a gas turbine, ramjet, or scramjet engine where combustion takes place. It is also known as a burner, combustion chamber or flame holder. In a gas turbine engine, combustion chamber is fed high pressure air by the compression system. ๐Ÿ›ฉ️The combustor then heats this air at constant pressure. After heating, air passes from the combustor through the nozzle guide vanes to the turbine. In the case of a ramjet or scramjet engines, the air is directly fed to the nozzle. ๐€๐ง๐ง๐ฎ๐ฅ๐š๐ซ ๐“๐ฒ๐ฉ๐ž ✈️The most commonly used type of combustor is the fully annular combustor. Annular combustors do away with the separate combustion zones and simply have a continuous liner and casing in a ring. There are many advantages to annular combustors, including more uniform combustion, shorter size, lighter, and less surface area. Annular combustors tend to have very uniform exit temperatures. They also have the lowest pressure drop of the three...

๐— ๐—ผ๐—ป๐—ผ๐—ฐ๐—ผ๐—พ๐˜‚๐—ฒ ๐˜ƒ๐˜€ ๐—ฆ๐—ฒ๐—บ๐—ถ-๐—บ๐—ผ๐—ป๐—ผ๐—ฐ๐—ผ๐—พ๐˜‚๐—ฒ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ

๐Ÿ›ซA monocoque structure uses its outer shell to support stresses and loads applied to it, whereas a semi-monocoque structure has an internal "skeleton" of supports and braces to keep its shape rigid and strong. ๐Ÿ›ซThe vast majority of pressurized aircraft are semimonocoque to help distribute stresses equally along the fuselage during flight. ๐Ÿ›ซHowever, some helicopters use monocoque structure to maximize internal space in the flight compartment. ๐Ÿ›ซMonocoque fuselage has its skin holding the skeleton structure together while the semi-monocoque has both the skin and the skeleton holding together. ๐Ÿ›ซSemi-monocoque also has "stringers" running horizontally down the plane to help hold the frame together. ๐Ÿ›ซThe monocoque fuselage also cannot be used for airframes after a certain size (small aircraft with single engine), but the semi-monocoque has been used from single piston engines to commercial airliners. ๐Ÿ›ซA monocoque design would also have ...

๐„๐ฆ๐ฉ๐ž๐ง๐ง๐š๐ ๐ž

Empennage ๐Ÿ›ฉ️The empennage of an aircraft is also known as the tail section. Most empennage designs consist of a tail cone, fixed aerodynamic surfaces or stabilizers, and movable aerodynamic surfaces. ๐Ÿ›ฉ️The tail cone serves to close and streamline the aft end of most fuselages. The cone is made up of structural members like those of the fuselage; however, cones are usually of lighter construction since they receive less stress than the fuselage. ๐Ÿ›ฉ️The other components of the typical empennage are of heavier construction than the tail cone. These members include fixed surfaces that help stabilize the aircraft and movable surfaces that help to direct an aircraft during flight. The fixed surfaces are the horizontal stabilizer and vertical stabilizer. The movable surfaces are usually a rudder located at the aft edge of the vertical stabilizer and an elevator located at the aft edge the horizontal stabilizer. ๐Ÿ›ฉ️The structure of the stabilizers is very similar to that which ...