Skip to main content

Posts

𝐀𝐏𝐔 𝐅𝐢𝐫𝐞 𝐃𝐞𝐭𝐞𝐜𝐭𝐢𝐨𝐧 & 𝐄𝐱𝐭𝐢𝐧𝐠𝐮𝐢𝐬𝐡𝐢𝐧𝐠 𝐒𝐲𝐬𝐭𝐞𝐦

APU Fire Detection & Extinguishing System 🛩️The APU fire protection system is similar in design to engine fire protection systems, but there are some differences. The APU is often operated with no personnel in the flight deck and; the APU fire protection system can operate in an unattended mode on the ground with the engines not running. 🛩️If there is an APU fire in the unattended mode, the fire extinguisher discharges automatically. The APU operates in the attended mode when at least one engine is running. If there is an APU fire in this mode, the crew discharges the bottle manually. Fire switches are located on the cargo fire/ engine control panel and the service and APU shutdown panel located outside the airplane on the nose landing gear. 🛩️If there is an APU fire, the APU fire detection system gives fire warnings and automatically stops the APU. The APU fire warning light comes on to identify the correct fire switch to use to extinguish the fire. The fire switch sole...
Recent posts

𝐇𝐞𝐥𝐢𝐜𝐨𝐩𝐭𝐞𝐫 𝐒𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞

Helicopter Structure 🛩️The major components of a helicopter are the airframe, fuselage, landing gear, powerplant/ transmission, main rotor system, and antitorque system. 🛩️The airframe, or fundamental structure, of a helicopter can be made of either metal or wood composite materials, or some combination of the two. Typically, a composite component consists of many layers of fiber- impregnated resins, bonded to form a smooth panel. Tubular and sheet metal substructures are. 🛩️The major components of a helicopter are the airframe, fuselage, landing gear, powerplant/ transmission, main rotor system, and antitorque system. 🛩️The airframe, or fundamental structure, of a helicopter can be made of either metal or wood composite materials, or some combination of the two. Typically, a composite component consists of many layers of fiber- impregnated resins, bonded to form a smooth panel. Tubular and sheet metal substructures are usually made of aluminum, though stainless steel or...

𝐆𝐥𝐢𝐝𝐞 𝐒𝐥𝐨𝐩𝐞

Glide Slope 🛩️glide slope of ILS is defined as a system of vertical guidance embodied in the Instrument Landing System which indicates the vertical deviation of the aircraft from its optimum path of descent. 🛩️A glide slope station uses an antenna array sited to one side of the runway touchdown zone. The GS signal is transmitted on a carrier signal. 🛩️The centre of the glide slope signal is arranged to define a glide path of approximately 3° above horizontal (ground level). The beam is 1.4° deep (0.7° below the glide-path centre and 0.7° above). 🛩️The pilot controls the aircraft so that the glide slope indicator remains centered on the display to ensure the aircraft is following the glide path to remain above obstructions and reach the runway at the proper touchdown point (it provides vertical guidance). 🛩️Two signals are transmitted on one of 40 ILS channels. One is modulated at 90 Hz, the other at 150 Hz. These are transmitted from co-located ant...

𝐑𝐚𝐝𝐢𝐨 𝐰𝐚𝐯𝐞𝐬

Radio Waves 🛩️A radio wave is invisible to the human eye. It is electromagnetic in nature and part of the electronic spectrum of wave activity that includes gamma rays, x-rays, ultraviolet rays, infrared waves, and visible light rays, as well all radio waves. The atmosphere is filled with these waves. Each wave occurs at a specific frequency and has a corresponding wavelength. The relationship between frequency and wavelength is inversely proportional. A high frequency wave has a short wave length and a low frequency wave has a long wave length. 🛩️In aviation, a variety of radio waves are used for communication. Here, It is illustrated the radio spectrum that includes the range of common aviation radio frequencies and their applications. 🛩️A wide range of frequencies are used from low frequency (LF) at 100 kHz (100,000 cycles per second) to super high frequency (SHF) at nearly 10gHz (10,000,000,000 cycles per second). The Federal Communications Commission (FCC) controls ...

𝐄𝐦𝐩𝐞𝐧𝐧𝐚𝐠𝐞

Empennage 🛩️The empennage of an aircraft is also known as the tail section. Most empennage designs consist of a tail cone, fixed aerodynamic surfaces or stabilizers, and movable aerodynamic surfaces. 🛩️The tail cone serves to close and streamline the aft end of most fuselages. The cone is made up of structural members like those of the fuselage; however, cones are usually of lighter construction since they receive less stress than the fuselage. 🛩️The other components of the typical empennage are of heavier construction than the tail cone. These members include fixed surfaces that help stabilize the aircraft and movable surfaces that help to direct an aircraft during flight. The fixed surfaces are the horizontal stabilizer and vertical stabilizer. The movable surfaces are usually a rudder located at the aft edge of the vertical stabilizer and an elevator located at the aft edge the horizontal stabilizer. 🛩️The structure of the stabilizers is very similar to that which ...

𝐓𝐲𝐩𝐞𝐬 𝐨𝐟 𝐑𝐚𝐝𝐢𝐨 𝐖𝐚𝐯𝐞𝐬

Types of Radio Waves 🛩️Radio waves of different frequencies have unique characteristics as they propagate through the atmosphere. VLF, LF, & MF waves have relatively long wavelengths and utilize correspondingly long antennas. 🛩️Radio waves produced at these frequencies ranging from 3kHz to 3mHz are known as ground waves or surface waves. They follow the curvature of the earth as they travel from the broadcast antenna to the receiving antenna. Ground waves are particularly useful for long distance transmissions. Automatic direction finders (ADF) & LORAN navigational aids use these frequencies. ✈️High frequency (HF) radio waves travel in a straight line & do not curve to follow the earth’s surface. This would limit transmissions from the broadcast antenna to receiving antennas only in the line-of-sight of the broadcast antenna except for a unique characteristic. HF radio waves bounce off of the ionosphere layer of the atmosphere. This refraction extends the range of...